The generator matrix 1 0 0 1 1 1 2X 1 1 1 1 2 2X X+2 1 1 1 1 0 X 1 3X+2 1 X 2X+2 1 X+2 1 3X+2 1 1 1 1 1 1 1 1 0 1 0 2X 3 2X+3 1 X X+3 3X 3X+3 1 1 3X+2 2X+1 X 3X+2 3X+1 3X+2 1 2X+2 1 2X+1 2 1 2X 1 2X 1 3 3X+2 3X+3 2 2 2X+1 2X+2 3X+3 0 0 1 3X+1 X+1 2X X+1 X 2X+1 1 3X 3X 2X+3 1 X+2 2X+2 3X+3 X+1 1 2X+2 3X+2 X+1 2 1 1 3X+3 3X 1 2X+3 2X+3 2 2X 3X+3 3 2X+3 3X 3X+1 generates a code of length 37 over Z4[X]/(X^2+2) who´s minimum homogenous weight is 34. Homogenous weight enumerator: w(x)=1x^0+374x^34+716x^35+714x^36+900x^37+460x^38+412x^39+246x^40+140x^41+106x^42+8x^43+14x^44+4x^46+1x^48 The gray image is a code over GF(2) with n=296, k=12 and d=136. This code was found by Heurico 1.16 in 0.094 seconds.